Polynomial Acceleration for Restarted Arnoldi
Iteration and its Parallelization

AKIRA NISHIDA RELII SuDA Y 0OSHIO OYANAGI

Abstract

We propose an accelerating method for the restarted Arnoldi iteration to compute a
number of eigenvalues of the standard eigenproblem Az = Ax and discuss the dependence
of the convergence rate of the accelerated iteration on the distribution of spectrum. The
effectiveness of the approach is proved by numerical results. We also propose a new
parallelization technique for the nonsymmetric double shifted QR algorithm with perfect
load balance and uninterrupted pipelining on distributed memory parallel architectures,
which is strongly required from the viewpoint of complexity of the Arnoldi iteration. Its
parallel efficiency is much higher than those reported in other papers.
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1 Introduction

In the last few years, there have been great progress in the developments of the methods for
the standard eigenproblem. Arnoldi’s method, which have the disadvantage of increasing
computational complexity per iteration step, was improved by Saad [5] with the explicitly
restarting technique (ERA), by which the dimensions of the Krylov subspaces is kept mod-
est. Although the restarted Arnoldi iteration is a quite effective approach, the dimension
of the subspace becomes inevitably large, especially when the wanted eigenvalues are clus-
tered. In this paper, we propose a simplified least-squares based method to accelerate the
convergence of the restarted Arnoldi iteration.

The algorithm of the explicitly restarted Arnoldi iteration is summarized in Table 1. The
choice of subspace dimension m is usually a tradeoff between the length of the iteration
and the rate of convergence. Suppose A € R™" is diagonalizable with eigensolutions
(uj, A;) for j = 1,...,n. If ¢(:) is some polynomial and we expand the current starting
vector 1 in terms of the basis of eigenvectors, then we have ¥(A)z; = u1p(A)G + -+ +
Un¥(Ap)Cpn. Assuming that the eigenvalues are ordered so that the wanted k ones are at
the beginning of the expansion, we seek a polynomial such that max;—py1 | (N)| <
min;—y __x |¥(A;)]. The acceleration techniques and hybrid methods presented by Saad [5]
attempt to improve the explicitly restarted Arnoldi iteration by approximately solving this
min-max problem. A Chebyshev polynomial 1/(A) on an ellipse containing the unwanted
Ritz values is applied to the restart vector in an attempt to accelerate convergence of the
original explicitly restarted Arnoldi iteration. The choice of ellipses as enclosing regions in
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Table 1. Block version of explicitly restarted Arnoldi iteration with polynomial acceleration

1. Choose V3 € R™*".
2. Forj=1,...,m—1do

W; = AV

Fori=1,...,5 do

Hij=V{IW;; W; =W; = ViH,;
end for
QiR =W Vien=Qj; Hjtij=R;
end for

3. Compute the eigenvalues of H,, = (H; ;) € R™*™" and select {\1,..., A} of
largest real parts.

4. Stop if their Ritz vectors Xo = {Z1, ..., &, } satisfy the convergence criteria.
5. Define the iteration polynomial 15,()) of degree k by Sp(H) — {5\1, e S\T}
6. X =r(A)Xo; QrRr=Xi; Vi=Qk

7. Goto 2.

Chebyshev acceleration, however, may be overly restrictive and ineffective if the shape of
the convex hull of the unwanted eigenvalues bears little resemblance to an ellipse. This has
spurred much research in which the acceleration polynomial is chosen so as to minimize an
Ls norm of the polynomial ¥ on the boundary of the convex hull of the unwanted eigenvalues
with respect to some suitable weight function w. The only restriction with this technique
is that the degree of the polynomial is limited because of cost and storage requirements.
This can be overcome by compounding low degree polynomials, and the stability of the
computation is enhanced by employing a Chebyshev basis.

2 Orthogonality based method

In this paper, we propose a simple method for determining the least squares polynomials
which minimize the Ls norm, defined on the boundary of the convex hull. By the maximum
principle, the maximum modulus of |1, ()| is found on the boundary of some region H of
the complex plane that includes the spectrum of A. We define an accelerating polynomial
by a least squares residual polynomial minimizing the Ls norm with respect to some weight
w(A) on the boundary of H. Suppose that the g + 1 points hg, hy,- -+, h, constitute the
vertices of H. On each edge h,_1h,, v = 1, -, u, of the convex hull, we choose a weight
function w,(A). Denoting by ¢, the center of the vth edge and by d, the half width, i.e.,
¢y = (hy + hy—1)/2,dy, = (hy — hy—1)/2, the weight function on each edge is defined by
wy(A) = 2]d? — (A — cy)2|_%/7r. The inner product on the space of complex polynomials
is defined by (p,q) = >b_, Jn,_in, P @(AN)wy (N)|dA]. We express the polynomial #;(A) in

terms of the Chebyshev polynomials t;(A) = jzo 'yl-(f/-)T(f), where £ = (A —¢,)/d, is real.

7 g 1
The expansion coefficients ’ygl;-) can be computed easily from the three term recurrence of

the polynomials.

Let a non-negative weight function w(\) be given in the interval @ > A > b. The
orthogonal polynomials po(A), p1(A), -+, when multiplied by suitable factors C, possess a
minimum property: the integral [(A" 4+ a, 1 A" '+ 4 ag)?w(N)d) takes on its least value
when the polynomial in the integrand is Cp,(A). The polynomial in the integrand may be
written as a linear combination of the p;(A), in the form (Cp,(\) + ch_1pn—1(A) + - ¢o).
Since the functions p,(A)\/w(A) are orthogonal, and in fact, orthogonal if the p;(\) are
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appropriately defined, the integral is equal to C? + E?;OI c?, which assumes its minimum at

cg=c¢1 == cp_1 = 0. Using the property, we can directly generate the coefficients of
the ortho-normal polynomials in terms of the Chebyshev weight, on the basis of the three
term recurrence, where each polynomial satisfies the ortho-normality condition. Note that
the orthonormality of ¢¢ and ¢y must hold and each expansion of ;(\) at each edge needs
to be consistent [4]. Denoting the number of nonzero entries in A by n,,, and the number of
required eigenvalues in the block Arnoldi iteration by 7, the cost of block Arnoldi method
can be defined as O(rmn,,, +m?r?n) flops. 10r*m3? flops are required for the computation
of the eigenvalues of H,, of order mr by the QR algorithm, r3O(m?) for the corresponding
eigenvectors by the inverse iteration, and 2kr n,, + O(n) for the Chebyshev iteration. The
computation of the coefficients costs approximately O(uk?) flops, where u is the number
of the vertices of the convex hull. The complexity of the orthogonality-based method is
roughly O(n?), while that of the QR algorithm is O(n?).

We solved some test problems from the Harwell-Boeing sparse matrix collection, us-
ing the block Arnoldi iteration. Table 2 and Figure 1 indicates that our algorithm shows
better performance than the ellipse based method in the cases where the moduli of the
wanted eigenvalues are considerably larger than those of the unwanted eigenvalues. Ta-
ble 3 shows the comparative results on the ARPACK software package and the Harwell
Subroutine Library code EB13 [2]. EB13 and ARPACK implement the explicitly restarted
Arnoldi iteration , the ellipse based Chebyshev polynomial acceleration, and the implicitly
restarted Arnoldi iteration, respectively. From the results of Table 3, we can derive the
strong dependency of the polynomial acceleration on the distribution of spectrum. Figure
1 and some additional results on the transition of accelerating polynomials [4] indicate that
the non-clustered distribution of spectra causes slow convergence, which is due to the dis-
crepancies between the accelerated domains and the computed spectra. ARPACK displays
monotonic consistency and is generally faster and more dependable for small convergence
tolerances and large departures from normality. However, its restarting strategy can be
more expensive.

Table 2. Test problems extracted from the modeling of chemical engineering plants. The results by
ellipse based algorithm (right) versus those by the orthogonality based method (left), with size of
the basis 20, degree of the polynomial 20, and block size 1, respectively, are listed. * denotes the
algorithm fails to converge. CPU time by Alpha Station 600 5/333.

| problem | WEST0497 | WEST0655 | WEST0989 | WEST2021 |
order of matrix 497 655 989 2021
number of entries 1727 2854 3537 7353
number of multiplications 924 440 | 275 120 | 13751 * 76T 320
number of restarts 14 10 3 2 162 * 12 7
CPU time (sec.) 0.37 | 0.22 | 0.17 | 0.12 8.71 *11.28 | 0.67

3 Parallelization of QR algorithm

The above results on the complexity of our method indicate the necessity of more efficient
computation of the Arnoldi iteration. Although the speed of convergence increases which
the subspace size m is chosen larger, the number of floating-point operations, and therefore
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Table 3. CPU times of explicitly and implicitly restarted Arnoldi iterations by IBM RS/6000 3BT
and matrix-vector products for computing the right-most eigenvalues of WEST2021 and PORES2
of order 1224. We denote by r the number of eigenvalues and by m the subspace dimension.

| WEST2021 [[ r=1,m=8 | r=5,m=20 | [ PORES2 [ r=1,m=12 [ r=4,m=20 |

EB13 17/4860 | 18/4149 EB13 0.4/119 1.3/305
ARPACK || 3.7/401 | 2.1/167 ARPACK || 0.5/90 1.3/151

Figure 1. Computed spectra of WEST0497, WEST0655, WEST0989, WEST2021, and PORES2

the time required by the algorithm, rapidly increases with the subspace dimension m.

To avoid QR to become a bottleneck, we propose here a new data mapping method and
a schedule of the computation for the parallel Hessenberg double shifted QR algorithm on
distributed memory processors. Figure 2 shows the data mapping, where the number of the
processors p = 6. This method is based on the partition of the matrix into 2p x 2p blocks.
The mapping is similar to the block Hankel-wrapped storage scheme in that the matrix is
partitioned into 2p strips along the subdiagonal, and that each processor owns two strips
at an interval of p. However, the strips are shifted left by 1.5 blocks, and this shift makes
the loads near the diagonal so light that the lookahead step can be executed at the same
time with the updates of the previous block transformation. We use a ‘half block’ as a unit
of computation: We assume that each computation of the lookahead step and the column
rotations of a diagonal block, whose nonzero elements are about a half of a block, is a half
block. The time taken to execute the computation of a half block is a ‘quarter’, because
each processor has four half blocks of computations in a block transformation.

Figure 2 also shows the schedule of the computations in the fourth block transformation.
Each processor has four half blocks of computations and the order of the computations is
shown with the number 1 to 4. The arrows depict the required communication. The
long arrows from the diagonal block stand for the broadcast of the transformations. The
lookahead step is executed by the processor 5 in the third quarter. Therefore, there is time
of a quarter from the end of a lookahead step to the beginning of the transformations that
use the results of the lookahead step, and it becomes possible to hide the latency of the
broadcast of the transformations. The column rotation of the diagonal block was done in the
first quarter. The row rotations in a processor are executed from right to left and the column
rotations in a processor are executed from bottom to top, because the results of the half
blocks at the right and the bottom must be sent to the next processors. With this ordering,
at least two quarters of time are available to hide the latency of each communication.

The graph in Figure 2 shows the parallel performance of our program without matrix
size reduction on a Fujitsu AP1000+, a distributed memory multicomputer system with
256 SuperSparcl0 processors (50 MHz). The graph shows the relation between Mflops per
processor and n/p with several values for p. The peak performance of the Hessenberg double
shift QR algorithm on a single processor of AP1000+ is about 20.8 MFlops, using unrolling
and tiling. Therefore, the parallel efficiency of 50% is attained with n/p < 40, and the
parallel efficiency becomes 90% with n/p &~ 150. Such high parallel efficiency has rarely
been observed in preceding researches on the parallel double shifted QR algorithm [1].
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Figure 2. The proposed data mapping method and Mflops per processor vs n/p for first iterations.
The broken lines in the left figures indicate the boundaries of the blocks, and the solid lines show
the boundaries of the elements allocated to different processors. The numbers indicate to which
processor each region should be allocated.

4 Conclusion

We simplified the computation of the least-squares polynomial which minimizes its norm
on the boundary of the convex hull enclosing unwanted eigenvalues, using the minimum
property of the orthogonal polynomials. Although the validity of our method was confirmed
by numerical experiments, the number of floating point operations rapidly increases with
the size of the subspace dimension m and it indicates that we need to take m as small as
possible if we want to avoid QR to become a bottleneck. Our new data mapping for double
shifted QR algorithm, in which the loads including the lookahead step are balanced and the
computations are pipelined by hiding the communication latency, is to become a promising
method for the problem. The integration of these two approaches is the current problem.
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