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ABSTRACT

We present an approach for the acceleration of the restarted Arnoldi iteration for the computation of
a number of eigenvalues of the standard eigenproblem Az = Az. This study applies the Chebyshev
polynomial to the restarted Arnoldi iteration and proves that it computes necessary eigenvalues with
far less complexity than the QR method. We also discuss the dependence of the convergence rate of
the restarted Arnoldi iteration on the distribution of spectrum.

BACKGROUND

In the past five years, there have been great progress in the further developments of the methods
for the standard eigenproblem. Arnoldi’s method, which had the defect of increasing computational
complexity per iteration step, was much improved by Saad [8] with the explicitly restarting technique,
by which the dimensions of the searchspaces can be kept modest. Although the restarted Arnoldi
iteration is quite effective, the dimension of the subspace is inevitably large, in particular when
the wanted eigenvalues are clustered. Moreover it favors the convergence on the envelope of the
spectrum. In this paper, we use the convex hull proposed for the solution of the nonsymmetric linear
system to accelerate the convergence of the restarted Arnoldi iteration.

The algorithm of the explicitly restarted Arnoldi iteration is summarized in Table 1. The choice of
subspace dimension m is usually a tradeoff between the length of the reduction that may be tolerated
and the rate of convergence. The accuracy of the Ritz values typically increases as m does. For most
problems, the size of m is determined experimentally.

Suppose A is diagonalizable with eigenpairs (u;, A;) for j = 1,...,n. If () is some polynomial and
we expand the current starting vector z; in terms of the basis of eigenvectors, then

Assuming that the eigenpairs (u;, ;) are ordered so that the wanted & ones are at the beginning of the
expansion, we seek a polynomial such that

Components in the direction of unwanted eigenvectors are dumped.

The acceleration techniques and hybrid methods presented by Saad [8] attempt to improve the
explicitly restarted Arnoldi iteration by approximately solving this min-max problem. Motivated by
Manteuffel’s scheme [6], Saad proposed the use of Chebyshev polynomials. A Chebyshev polynomial
1(A) on an ellipse containing the unwanted Ritz values is applied to the restart vector in an attempt



to accelerate convergence of the original explicitly restarted Arnoldi iteration. The polynomial is
applied with the use of the familiar three-term recurrence.

The choice of ellipses as enclosing regions in Chebyshev acceleration may be overly restrictive and
ineffective if the shape of the convex hull of the unwanted eigenvalues bears little resemblance with
an ellipse. This has spurred much research in which the acceleration polynomial is chosen so as
to minimize an L, norm of the polynomial ¢/ on the boundary of the convex hull of the unwanted
eigenvalues with respect to some suitable weight function w. The only restriction with this technique
is that the degree of the polynomial is limited because of cost and storage requirements. This,
however, is overcome by compounding low degree polynomials. The stability of the computation is
enhanced by employing a Chebyshev basis. It has been shown that the least-squares based method
for solving linear systems is competitive with the ellipse based methods and are more reliable [7, 8].
For convenience we can always normalize the polynomial so that ¢»(A;) = 1. The desired polynomial
satisfying the above constraint can be sought in the form ¢, (A) = 1 — As, (). By the maximum
principle, the maximum modulus of |1 — As,, ()| is found on the boundary of some region H of the
complex plane that includes the spectrum of A and it is sufficient to regard the problem as being
defined on the boundary. We use the least squares residual polynomial minimizing the L, norm
|| T— Asn(A) || with respect to some weight w(\) on the boundary of H [8]. Suppose that the
w1 points hg, hy,---, h, constitute the vertices of /. On each edge E,, v = 1,---, u, of the
convex hull, we choose a weight function w, (). Denoting by ¢, the center of the vth edge and
by d, the half width, i.e., ¢, = (h, + h,_1)/2, d, = (h, — h,_1)/2, the weight function on each
edge is defined by w,(\) = 2|d% — (A — ¢,)2| "2 /7. The inner product on the space of complex
polynomials is defined by (p, q) = >5_, [ p(A)g(A)w,(N)|dA|. An algorithm using explicitly the
modified moments (t;()\),¢;())), where {¢;} is some suitable basis of polynomials, is developed for
the problem of computing the least squares polynomials in the complex plane.

We express the polynomial ¢;(\) in terms of the Chebyshev polynomials ¢;(\) = Y7_ o% J T:(&)

where £ = (A —¢,)/d, is real. The expansion coefficients ~, ( ) can be computed easily from the
three term recurrence of the polynomials (. 1t;1(N) = (A — ak)tk(/\) — Oktr_1(A). The problem
mingey, || 1 — Asp(A) |l is to find 5 = (o, 71, mu1)? of 5,(A) = S0 mit;(\) so that
J(n) =|| 1 = Asp(A) || is minimum.

Table 1. A block version of explicitly restarted Arnoldi reduction with polynomial acceleration

1. Choose V; € R™*7.,
2.Forj=1,...m—1do
W, = AV,
For:=1,...,5do
Hi; =V'W; W;=W,;-VH,;

end for
QiR; =Wy Vipi=Qj Hjp,; =R,
end for

3. Compute the eigenvalues of H,, = (H; ;) € R™ ™" and select {)i, ..., \,} of largest real
parts.
4. Stop if their Ritz vectors Xo = {71, ..., &, } satisfy the convergence criteria.
5. Define the iteration polynomial pk()\) of degree k by Sp(H,,) — {X1, ..., A, }.
6. Xi = pe(A)Xo; QrRr = Xy =Q

7. Goto 2.




APPROACH

In the previous section we described the outline of the least-squares based method on any arbitrary
area. It has a difficulty on the application to other purposes due to the constraint ,,(0) = 1.

We use the fact that the eigenvalue problem does not require any such condition to the polynomial
and propose a new simple algorithm to get the mini-max polynomial to accelerate the convergence
of the projection method. The minimum property of the Chebyshev functions described below is
important to prove the optimality of this polynomial.

Let a non-negative weight function w(A) be given in the interval @ > A > b. The orthogonal
polynomials po(A), pi(A), - - -, when multiplied by suitable factors C, possess a minimum property:
the integral [(A" + a, 1 A"' + - -+ + ag)>w(N)dA takes on its least value when the polynomial in the
integrand is C'p,,(\). The polynomial in the integrand may be written as a linear combination of the
pi(A), in the form (Cp,,(A) + ¢—1pn—1(A) + - - - ¢o). Since the functions p,,(\)y/w(A) are orthogonal,
and in fact, orthogonal if the p;()\) are appropriately defined, the integral is equal to C? + S."Z/ ¢2,
which assumes its minimum atcyg = ¢; = --- = ¢,,—1 = 0.

Using the above property, we describe the new method to generate the coefficients of the ortho-
normal polynomials in terms of the Chebyshev weight below. We use the three term recurrence
Brnr1Pnr1(A) = (A — an)pn(A) — Bupn_1(A), where p;(A) satisfies the ortho-normality. Because

of the condition of the use of the Chebyshev polynomial ¢, (\) = > va';)T [(A = ¢,)/d,], the

constraints (v, o) = 25- |16 12 = 1, (¥, ) = S0y 2167 P + 1471 = 1, and (to,0) =
230, 7(()”0) 75”1) = 0 must hold. Moreover each expansion of ;(\) at each edge must be consistent.
Using the three term recurrence of the Chebyshev polynomials, a similar recurrence g 1¢x11(A) =
(A — o) (A) — Sktbr—1(A) on 9;(A) holds. Denoting &, by &, = (A — ¢,)/d,, the equation can be
rewritten as . o
B (V) = (€ + ¢, — ) Y9 DTE) = 8 7 Tl6)

=0 i=0

From the relations £7;(8) = [T341(8) + Ti-1(€)]/2, i > 0 and £T5(8) = T1 (), it is expressed by

1 1 1 1
Y vETi(€) = —%To(f) (o + 572)TI O+ + 5(%’—1 +ir)Ti(§) ++ -+ 5(%—1 +Ynt1)Tn (),
where v,,.1 = 0, and arranged into
VEV) (v) VEV) = (v)
ﬁn+l¢n+1( ) ( ) + (IYO,TL + 77) Z 5 ,71 ln + 72—1—1 n)T (5)]
i=2
—a, ZW(V)T — 6, Z %(”n) T (T_, =Ty).

Comparing the equation with ¥, (\) = 2] Z(l;) 1 13(€), we find the following relations

v 1 v v v
BurTomsr = 5dnin + (€0 = a6 = 8761,

v v 1 v v v
Buri Vs = d (00 + 57570 + (e = @) = 8,

and

)

dl/ v v
Bur Vi = 5 00+ 000+ (e = )l = 8y



Using the relation Gy 1% 1(A) = (A— )i (A) — 6xhr—1 () and the orthogonality of the Chebyshev
polynomials, we derive
, k4l

Bt = (Vrr1, brrn) Z/ Uk 1 V1w, (A)|[dA] = ZZZ O%k+1%k+1

where we denote by 3’7 ja; = 2a0 + >, a;. o and 6 are computed similarly:

w

m
ap = (M, ) = D ( Cuzl O%k%k +d Zl O%k%(+)| By k= (M, k) = Y dyu,
v=I

v=I1

where v, = 7| ;373”;3 (R 4+ 14 ", AT Y | CH LIl k)%(”k) -

EVALUATION

Denoting by n, nz, m, r, k respectively the order of the matrix, its number of nonzero entries,
the number of block Arnoldi steps, the number of required eigenvalues, and the degree of the
Chebyshev polynomial, the block Arnoldi method costs 37", {2rnz + 4nr?j + 2r(r + 1)n} =
2rm nz +2mr(mr+2r+1)n flops. 10r*m?> flops are required for the computation of the eigenvalues
of H,, of order mr by the QR method, 7*O(m?) for the corresponding eigenvectors by the inverse
iteration, and 2kr nz + O(n) for the Chebyshev iteration [3, 9]. The computation of the coefficients
costs approximately O(uk?) flops, where p is the number of the vertices of the convex hull. Table 2
shows that the complexity of the orthogonality-based method is roughly O(n?), while that of the QR
method is O(n?).

We solved some test problems from the Harwell-Boeing sparse matrix collection [2], the spectral
portraits of which are shown in Figure 1, using the block Arnoldi iteration. Ho’s algorithm was used
for reference. Table 3 and Table 4 indicate that our algorithm shows better performance than Ho’s
method in the cases where the moduli of the necessary eigenvalues are considerably larger than those
of the unnecessary eigenvalues.

Table 5 shows the comparative results on the ARNCHEB package [1], the ARPACK software package
[5], and the Harwell Subroutine Library code EB13 [4]. ARNCHEB provides the subroutine
ARNOL, which implements the explicitly restarted Arnoldi iteration and the Chebyshev polynomial
acceleration. EB13 implements the similar algorithm and also uses Ho’s Chebyshev polynomial
acceleration. ARPACK provides subroutine DNAUPD that implements the implicitly restarted Arnoldi
iteration.

From the results of Table 5, we can derive the strong dependency of the polynomial acceleration on
the distribution of spectrum. Figure 1 indicates that the non-clustered distribution of spectra causes
the slow convergence, since the approximate spectra may completely differ from the accurate ones.
Although ARNCHEB gives reasonable results for computing a single eigenpair, it can struggle on
problems for which several eigenvalues are requested. ARPACK displays monotonic consistency and
is generally faster and more dependable for small convergence tolerances and large departures from
normality. However, its restarting strategy can be more expensive.

CONCLUSION

We simplified the computation of the least-squares polynomial which minimizes its norm on the
boundary of the convex hull enclosing unwanted eigenvalues, using the minimum property of the
orthogonal polynomials. The number of floating point operations rapidly increases with the size of
the subspace dimension m and it indicates that we need to take m as small as possible if we want
to avoid QR to become a bottleneck. Although some problems are to be solved, the validity of our
method was confirmed by the experiments using the Harwell-Boeing Sparse Matrix Collection. A
more detailed analysis of the precision and the complexity of the methods is required.



Table 2. Random matrices of order 50, for the cases of Amax = 2, 1.5, and 1.1, while the distribution
of the other eigenvalues is Re A € [0, 1], and Sm A € [—1, 1]. m, n., and n;., denote the order of the

Arnoldi method, the maximum order of the Chebyshev polynomials, and the number of the iterations,
respectively. CPU times (in seconds) by HP9000/720.

maximum orthogonality-based Arnoldi QR

eigenvalues | nier | m | no | error | time | ni, | m | error | time error | time
2 2 5 15 | 3.6E-15 | 0.38 2 15 | 89E-16 | 0.57 || 5.1E-15 | 1.87
1.5 3 5 |20 | 3.0E-15 | 0.70 3 15 | 3.7E-15 | 0.82 || 3.6E-15 | 1.85
1.1 5 10 | 20 | 29E-14 | 1.6 1 50 | 7.5E-13 | 3.93 || 5.2E-15 | 18.8

Table 3. Test problems from CHEMWEST, a library in the Harwell-Boeing Sparse Matrix Collection,
which was extracted from modeling of chemical engineering plants. The results by Ho’s algorithm
(right) versus those by the orthogonality-based method (left), with size of the basis 20, degree of the
polynomial 20, and block size 1, respectively, are listed. * denotes the algorithm fails to converge.
CPU time by Alpha Station 600 5/333.

| problem || WEST0497 | WEST0655 | WEST0989 | WEST2021 |
order of matrix 497 655 989 2021
number of entries 1727 2854 3537 7353
number of multiplications || 924 | 440 | 275 | 120 | 13751 * 1767 | 320
number of restarts 14 10 3 2 162 * 12 7
CPU time (sec.) 0.37 | 0.22 | 0.17 | 0.12 8.71 * 1128 | 0.67

Table 4. Test problems from TOLOSA extracted from fluid-structure coupling (flutter problem). Size
of the basis, degree of the polynomial, and block size are 20, 20, 1, respectively.

order of matrix 2000 4000 6000 8000 10000
number of entries 5184 8784 12384 15984 19584
number of multiplications || 589 | 240 | 393 | 180 | 236 | 140 | 393 | 380 | 236 80
number of restarts 7 4 5 3 3 2 5 7 3 1
CPU time (sec.) 083 043|124 | 070 | 1.23 | 0.85 | 2.57 | 2.81 | 2.14 | 0.97

Table 5. CPU times by IBM RS/6000 3BT and matrix-vector products for computing the right-most
eigenvalues of WEST2021 (left) and PORES?2 of order 1224 (right). * denotes convergence not
reached within 2000m matrix-vector products. We denote by r the block size and by m the subspace
dimension.

| Algorithm || r=1,m=8 | r=5,m=20 | | Algorithm || r=1,m=12 | r=4,m=20 |
EB12 * 98/20930 EB12 0.6/423 9.1/2890
ARNCHEB || 8.6/3233 | 71/15921 ARNCHEB || 3.4/1401 4.7/1712
EB13 17/4860 | 18/4149 ER13 0.4/119 1.3/305
ARPACK 3.7/401 2.1/167 ARPACK 0.5/90 1.3/151
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Figure 1. Spectral Portraits of WEST2021 and PORES2
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