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Abstract. In this paper, we propose a highly efficient accelerating method for the restarted Arnoldi iteration to compute the
eigenvalues of a large nonsymmetric matrix. Its effectiveness is proved by various numerical experiments and comparisons with other
approaches. Several new results on the characteristics of the polynomial acceleration are also reported.

The Arnoldi iteration has been the most popular method for nonsymmetric large eigenproblems. Although the defect of increasing
computational complexity per iteration step can be improved with the explicitly restarting technique, by which the dimensions of
the Krylov subspaces are kept modest, the dimension of the subspace becomes large, in particular when the required eigenvalues are
clustered. In our study, an accelerating polynomial is chosen to minimize an L2 norm of the polynomial on the boundary of the
convex hull with respect to some suitable weight function. A new simple algorithm is proposed for the efficient computation of the
mini-max polynomial to accelerate the convergence of the Arnoldi iteration.

From the numerical results, we can derive the strong dependency of the polynomial acceleration on the distribution of spectrum,
which proves the better performance of our algorithm than the Chebyshev acceleration, in the cases where the moduli of the wanted
eigenvalues are considerably larger than those of the unwanted eigenvalues, and the faster convergence than those of all the other
approaches, especially when the shape of the convex hull of the unwanted eigenvalues bears little resemblance with an ellipse.

Finally, we propose a new parallelization technique for the nonsymmetric double shifted QR algorithm with perfect load balance
and uninterrupted pipelining on distributed memory parallel architectures, which is strongly required from the viewpoint of complexity
of the Arnoldi iteration. Its parallel efficiency is much higher than those reported in other papers.

1. Introduction. In the last few years, there have been great progress in the developments of the methods
for the standard eigenproblem. Arnoldi’s method, which have the disadvantage of increasing computational
complexity per iteration step, was improved with the restarting technique, by which the dimensions of the Krylov
subspaces is kept modest.

Although the Arnoldi iteration is a considerably effective solution, the dimension of the subspace becomes
excessively large, especially when the required eigenvalues are clustered. Furthermore, outer eigenvalues on the
envelope of the spectrum show faster convergence. This difficulty has been overcome by using the polynomial
acceleration technique, which is an extension of the similar technique for symmetric matrices. In the nonsymmetric
case, we consider the distribution of the eigenvalues in the complex plane. Suppose A € R™*" is a diagonalizable
matrix with eigensolutions (u;, A;) for j = 1,...,n. Letting p(-) be some polynomial, the current starting vector
z; can be expanded as p(A)zy = e1p(A)us + -+ + ¢,p(Ap)u, in terms of the basis of eigenvectors. Then if we
assume that the eigenvalues are ordered so that the wanted k ones are located at the beginning of the expansion,
we seek a polynomial such that max;—g41,. » [P(A:)] < min=q . x [p(A;)| holds.

The acceleration techniques attempt to improve the restarted Arnoldi iteration by solving this min-max prob-
lem, where a Chebyshev polynomial p(A) on an ellipse containing the unwanted Ritz values is applied to the
restart vector to accelerate convergence of the restarted Arnoldi iteration.

2. Arnoldi’s Method.
2.1. Algorithm. Suppose A € R™*". The Arnoldi approach involves the column-by-column generation of

an orthogonal matrix @ such that QT AQ = H is the Hessenberg reduction. If we write Q as [q1, ..., ¢n] € R

and isolate the last term in the summation Ag,, = Z:Ztl himqm, then we have

(1) hm+1,m‘1m+1 = Aqm — Z him‘]m =Tm
i=1

where h;y, = gl Aqy, for i = 1,...,m. We assume that ¢ is a given 2-norm starting vector.
PROPOSITION 2.1. The Arnoldi process computes an orthonormal basis for the Krylov subspace K., (A, q1)

(2) span{qi, ..., ¢m} = span{q, Aqy, ..., A" 1q },
in which the map is represented by an upper Hessenberg matriz H,,.
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Proof. The vectors ¢; for j = 1,2, ..., m are orthonormal by construction. That they span K,, follows from the
fact that each vector v; is of the form p;_;(A)v; where p;_; is a polynomial of degree j — 1, which can be shown
by induction on 5. 0O

ALGORITHM 2.1 (ARNOLDI).

1. hiy = (Ag,q1)

2. for g =1,...,m—1, put

3. i =Ag =3 higi, g =l

4. Gt =hihrs higo = (A, @), (E<g+1).

PRrROPOSITION 2.2. Denote by H,, the m x m Hessenberg matriz whose nonzero entries are defined by the
algorithm. Then the following relations

(3) AQ, = QuH, +rmel
(4) Q¥ AQ,, = H,

hold, where e, = (0,...,0,1)T.

Proof. (3) holds from the equality Ag; = 22_11 hijqi, 5 = 1,2,...,m. (4) follows by multiplying both sides of
.o

The algorithm terminates when r; = 0, which is impossible if the minimal polynomial of A with respect to ¢;
is of degree > m. If this condition is satisfied, H,, is an irreducible Hessenberg matrix.

A complete reduction of A to Hessenberg form can be written as A = QHQM. Consider the first m < n
columns of AQ = QH. Let Q,, be the n x m matrix whose columns are the first m columns of Q, and let H,, be
the (m + 1) x m upper-left section of H,,11. We have AQ,, = Qm_HI-:Tm and the mth column of this equation
can be written as

(3)

(5) Agm = him@i + -+ PG + P 1, m @1 -

Then the vectors {g;} form bases of the successive Krylov subspaces generated by A and b, defined as

(6) Ky, = span{b, Ab, ..., A" 'b} = span{q,q2, ..., ¢m} C C™.

Since the vectors g; are orthonormal, these are orthonormal bases. Let us define K, to be a n x m Krylov matrix
(7) K., = [b,Ab,---, A" 1p].

Then K,, have a reduced QR factorization K,, = Q. R,,, where Q,, is the same matrix as above, and might be
expected to contain good information about the eigenvalues of A with largest modulus. ~

PROPOSITION 2.3. Let y; € C™ be an eigenvector of H,, associated with the eigenvalue \; and &; = Qny;.
Then

(8) (A - )\i—r)i’i = hm+17m€an,yiQm+l
and, therefore,
(9) | (A= XND@; [l2= huns1,mlellys].

Proof. (8) follows from multiplying both sides of (3) by y;. O

2.2. Block Arnoldi. Suppose that we are interested in computing the r eigenvalues of a matrix A € R™*".
Assume that V; € R™™" is a rectangular matrix having r orthonormal columns. Then the algorithm of the
block-Arnoldi method can be described as follows:

ALGORITHM 2.2 (BLOCK ARNOLDI).
1. For k=1,....m—1, do
2. Wy = AV,
For:=1,...,k, do

Hip=VIWy Wy=W,—V,H;;
QrRy = Wy
Vi1 = Qr; Hiy1,0 = Rie

o vk w



Letting U,,, = [V4, ..., Vin], the restriction of the matrix A to the Krylov subspace is written as

Hi, Hip» Him

H2,1 H2,2 HZ,m
(10) H,=UlAU,=| O :

O e O Hm,mfl Hm,m
The above algorithm gives
k
(11) AV, = Z ViH i + Vi1 Hep1p, fork=1,..,m,
i=1

which can be written in a form as
(12) AUy, =UnHpm + [0: vy 0y Vm+1Hm+1,m]'
Letting A,, = diag(j\l, - S\mr) be the diagonal matrix of eigenvalues of H,, corresponding to the eigenvectors
Y = Y1, s Ymr], the above relation gives
(13) AUmYm - UmHmYm = [07 ---707 Vm+1Hm+1,m]Ym-

If we denote by X'm = U,,Y,, the matrix of approximate eigenvectors of A and by Y, . the last r block of Y,
we have

(14) ” AXm - Xm[\m ||2:|| Hm+1,mYm,r ||27

which will be used for the stopping criterion in the following numerical evaluation.

2.3. The Arnoldi Iteration. The Arnoldi process, which have the disadvantage of increasing computational
complexity per iteration step, can be improved with the restarting technique, by which the dimensions of the
Krylov subspaces is kept modest [4]. In the iterative variant, we start with an initial vectors V7 and fix a moderate
value m, then compute the eigenvectors of H,,. We begin again, using new starting vectors computed from the
approximate eigenvectors.

The algorithm of the explicitly restarted Arnoldi iteration is summarized below. The choice of m is usually a
tradeoff between the length of the reduction that may be tolerated and the rate of convergence. The accuracy of
the Ritz values typically increases as m does. For most problems, the size of m is determined experimentally.

ALGORITHM 2.3 (EXPLICITLY RESTARTED ARNOLDI).

1. Choose V; € R™™".
2. For j=1,....m—1, do
3. W; = AV

4. For:=1,...,5, do

5. H¢7]‘ = ‘/;-TW]'; W]‘ = W]‘ — ViHi,j

6. QiRj =Wj; Vi1 =Qj; Hjyi; =R, o

7. Compute the eigenvalues of H,, = (H, ;) € R™" ™" and select {\y, ..., A} of largest real
parts

8. Stop if their Ritz vectors Xy = [Z1, ..., &,] satisfy the convergence criteria.

9. Define the iteration polynomial ¢4(A) of degree k by Sp(H,,) — {0 A}

10. Xp = Pr(A)Xo; QeRp = Xg; Vi=Qy

3. Least Squares Based Polynomial Acceleration.



3.1. Basic Approach. Let 7 be a simply connected region in the complex (-plane.
THEOREM 3.1 (THE MAXIMUM PRINCIPLE). If a function f(() is defined and continuous on a closed bounded
set T and analytic on the interior of T, then the mazimum of |f({)| on T is assumed on the boundary of T.
Using the above property, we can regard the mini-max problem as being defined on the boundary of the region
which contains the spectrum. Let the boundary C' of the region be a continuum consisting of a finite number of
rectifiable Jordan arcs. The integrals considered will have the form

(15) /O FO],

where f(() is a Lebesque-integrable function defined on C' and |d(| is the arc element on C.
DEFINITION 3.1. The scalar product of two functions f({) and g(¢), ¢ on C, is defined by the integral

(16) / FOFOw()ldC].

We introduce here the least squares residual polynomial minimizing an Ly norm with respect to some weight
w(¢) on the boundary of a convex hull formed from the approximate eigenestimates. Note that the constraint
pn(C) € 7L is not necessary for the eigenproblems [4].

The contour considered here is the finite union of line segments:

DEFINITION 3.2. Denote by 'H the convex hull constituted from the p vertices hg,---,h,, and by

1 1
(17) ¥, = i(hu + hu—l)’ o, = §(hz/ - hu—l),
the center and the half width on each edge C,, v = 1,2, ..., 1, respectively. We can define the Chebyshev weight

2 -1
(18) wu(() = ; [53 - (C - "91/)2] ° C € Cu
on each edge C,, and the inner product
“w
(19) )= [ §ORCwQ)licI = Z [, POl = Dt
v=1

on the boundary C. A norm is defined by || p ||%= (p,p).
Thus, we can rewrite the problem as

20 min max = min .
(20) min max|p(C)] = min_ | p(C) [lv

An algorithm using explicitly the modified moments (¢;({),t;(¢)), where {¢t;} is some suitable basis of poly-
nomials, is developed for the problem of computing the least squares polynomials in the complex plane. The set
of Chebyshev polynomials suitably shifted and scaled is reasonable as the basis {¢;} rather than the power basis

{1,¢,¢?,- -+, ¢ 1}, which forces unstable computation. However, the matrix M,, whose elements m; ; are defined
by
(21) mi; = (ti_1tica), i =1,2--n+1

is still likely to become increasingly ill-conditioned as its size n + 1 increases.
We express the polynomial ¢;(¢) in terms of the Chebyshev polynomials

1 ZE
is real.

(22) Z thV)T (&,), where ¢, = ¢—

174

()

The expansion coefficients ¢,
.

(23) Bra1trr1(¢) = (¢ — ar)tr(C) — yrtr—1(¢)-
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3.2. Least Squares Arnoldi. In this section, we propose a new algorithm to get the mini-max polynomial
for the accelerating the Arnoldi iteration.
We can orthogonalize the system and lead to a set of polynomials {p,({)}, where
(a) pn(¢) is a polynomial of degree n in which the coefficients of (™ is real and positive;
(b) the system {p,({)} is orthonormal, that is,

(24) A Pl OPn(Ow(OdC) = Sy mymy=0,1,2, ..

DEeFINITION 3.3. Let f({) be a continuous function defined on C and let there correspond the formal Fourier
expansion

(25) F(Q) ~ foro(C) + fipi(Q) + -+ + fupn({) +---.

The coefficients f,, called the Fourier coefficients of f() with respect to the given system, are defined by
(26) fo= ) = [ FORQuiQld,  n=0.1.2...

THEOREM 3.2 (BESSEL’S INEQUALITY). The partial sums s,(C) of (25) minimize the integral

(27) A 1£(0) = p(OPw(O)ldd]

if p(€) ranges over the class of all w,. The minimum is

(28) QPO = 1A = A =15

This also yields Bessel’s inequality

(29) AP+ UAP +- U <1 = [ 1FOP (@
Proof. For any finite system of complex numbers cq, ¢1, ¢, ..., ¢, We have

1f =Sy epills, = (f =iy e f =iy ep) =l £ 15 =S, efi = Xy aifs + Sy el =l £ 12
=S AP+ X | fi — @] by orthonormaliby of {p,}. Since its minimum is attained when ¢; = f; (i =
1,2,...,n), we have || f — >, ¢;p; |2, and hence > [fil* <|| fI]3. O

The Theorem 3.2 has the following important consequence:

COROLLARY 3.1. An orthonormal system {p,(C)} satisfies the condition (20).

Using the property, we can directly generate the coefficients of the ortho-normal polynomials in terms of the
Chebyshev weight, on the basis of the three term recurrence, where each polynomial satisfies the condition (24)
of orthonormality on p(¢). Note that the expansion of p;({) at each edge must be consistent.

4. Evaluation. Denoting the number of nonzero entries in A by n,,, and the number of required eigenvalues
in the block Arnoldi iteration by r, the cost of block Arnoldi method can be defined as O(rmn,,. +m?r?n) flops.
10r3m? flops are required for the computation of the eigenvalues of H,, of order mr by the QR algorithm, 73O (m?)
for the corresponding eigenvectors by the inverse iteration, and 2kr n,,, + O(n) for the Chebyshev iteration. The
computation of the coefficients costs approximately O(uk?) flops, where p is the number of the vertices of the
convex hull. The complexity of the orthogonality-based method is roughly O(n?), while that of the QR algorithm
is O(n3).

We solved some test problems from the Harwell-Boeing sparse matrix collection, using the block Arnoldi
iteration. Table 1 and Figure 1 indicates that our algorithm shows better performance than the ellipse based
method in the cases where the moduli of the wanted eigenvalues are considerably larger than those of the unwanted
eigenvalues. Table 2 shows the comparative results on the ARPACK software package and the Harwell Subroutine
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Library code EB13 [2]. EB13 and ARPACK implement the explicitly restarted Arnoldi iteration , the ellipse
based Chebyshev polynomial acceleration, and the implicitly restarted Arnoldi iteration, respectively. From the
results of Table 2, we can derive the strong dependency of the polynomial acceleration on the distribution of
spectrum. Figure 1 and some additional results on the transition of accelerating polynomials [3] indicate that
the non-clustered distribution of spectra causes slow convergence, which is due to the discrepancies between
the accelerated domains and the computed spectra. ARPACK displays monotonic consistency and is generally
faster and more dependable for small convergence tolerances and large departures from normality. However, its
restarting strategy can be more expensive.

TABLE 1
Test problems extracted from the modeling of chemical engineering plants. The results by ellipse based algorithm (right) versus
those by the orthogonality based method (left), with size of the basis 20, degree of the polynomial 20, and block size 1, respectively,
are listed. * denotes the algorithm fails to converge. CPU time by Alpha Station 600 5/333.

| problem [[| WEST0497 | WEST0655 | WEST0989 | WEST2021 |
order of matrix 497 655 989 2021
number of entries 1727 2854 3537 7353
number of multiplications 924 440 275 120 | 13751 * 767 320
number of restarts 14 10 3 2 162 * 12 7
CPU time (sec,) 0.37 | 0.22 | 0.17 | 0.12 8.71 * 1.28 | 0.67
TABLE 2

CPU times of explicitly and implicitly restarted Arnoldi iterations by IBM RS/6000 3BT and matriz-vector products for com-
puting the right-most eigenvalues of WEST2021 and PORES2 of order 1224. We denote by r the number of eigenvalues and by m
the subspace dimension.

[ WEST2021 || r=1,m=8 | r=5,m=20 | [ PORES2 [ r=1,m=12 [ r=4,m=20 |
EB13 17/4860 | 18/4149 EB13 0.4/119 1.3/305
ARPACK || 3.7/401 | 2.1/167 ARPACK || 0.5/90 1.3/151

o

FiGg. 1. Computed spectra of WEST0497, WEST0655, WEST0989, WEST2021, and PORES2

5. Parallelization of QR algorithm. The above results on the complexity of our method indicate the
necessity of more efficient computation of the Arnoldi iteration. Although the speed of convergence increases
which the subspace size m is chosen larger, the number of floating-point operations, and therefore the time
required by the algorithm, rapidly increases with the subspace dimension m.

To avoid QR to become a bottleneck, we propose here a new data mapping method and a schedule of the
computation for the parallel Hessenberg double shifted QR algorithm on distributed memory processors. Figure
2 shows the data mapping, where the number of the processors p = 6. This method is based on the partition of
the matrix into 2p x 2p blocks. The mapping is similar to the block Hankel-wrapped storage scheme in that the
matrix is partitioned into 2p strips along the subdiagonal, and that each processor owns two strips at an interval
of p. However, the strips are shifted left by 1.5 blocks, and this shift makes the loads near the diagonal so light
that the lookahead step can be executed at the same time with the updates of the previous block transformation.
We use a ‘half block’ as a unit of computation: We assume that each computation of the lookahead step and the
column rotations of a diagonal block, whose nonzero elements are about a half of a block, is a half block. The
time taken to execute the computation of a half block is a ‘quarter’, because each processor has four half blocks
of computations in a block transformation.



Figure 2 also shows the schedule of the computations in the fourth block transformation. Each processor has
four half blocks of computations and the order of the computations is shown with the number 1 to 4. The arrows
depict the required communication. The long arrows from the diagonal block stand for the broadcast of the
transformations. The lookahead step is executed by the processor 5 in the third quarter. Therefore, there is time
of a quarter from the end of a lookahead step to the beginning of the transformations that use the results of the
lookahead step, and it becomes possible to hide the latency of the broadcast of the transformations. The column
rotation of the diagonal block was done in the first quarter. The row rotations in a processor are executed from
right to left and the column rotations in a processor are executed from bottom to top, because the results of the
half blocks at the right and the bottom must be sent to the next processors. With this ordering, at least two
quarters of time are available to hide the latency of each communication.

The graph in Figure 2 shows the parallel performance of our program without matrix size reduction on a Fujitsu
AP1000+, a distributed memory multicomputer system with 256 SuperSparcl0 processors (50 MHz). The graph
shows the relation between Mflops per processor and n/p with several values for p. The peak performance of the
Hessenberg double shift QR algorithm on a single processor of AP1000+ is about 20.8 MFlops, using unrolling
and tiling. Therefore, the parallel efficiency of 50% is attained with n/p < 40, and the parallel efficiency becomes
90% with n/p ~ 150. Such high parallel efficiency has rarely been observed in preceding researches on the parallel
double shifted QR algorithm [1].
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Fi1G. 2. The proposed data mapping method and Mflops per processor vs n/p for first iterations. The broken lines in the left
figures indicate the boundaries of the blocks, and the solid lines show the boundaries of the elements allocated to different processors.
The numbers indicate to which processor each region should be allocated.

6. Conclusion. We simplified the computation of the least-squares polynomial which minimizes its norm on
the boundary of the convex hull enclosing unwanted eigenvalues, using the minimum property of the orthogonal
polynomials. Although the validity of our method was confirmed by numerical experiments, the number of floating
point operations rapidly increases with the size of the subspace dimension m and it indicates that we need to take
m as small as possible if we want to avoid QR to become a bottleneck. Our new data mapping for double shifted
QR algorithm, in which the loads including the lookahead step are balanced and the computations are pipelined
by hiding the communication latency, is to become a promising method for the problem. The integration of these
two approaches is the current problem.
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